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Plague is a highly virulent flea-borne zoonotic disease maintained in nature as an infection of
rodents, typically ground squirrels, prairie dogs, chipmunks or woodrats. Its etiological agent,
Yersinia pestis. is considered one of the most pathogenic bacteria for humans. Plague is usually
transmitted to humans by the bites of infected rodent fleas, less often by handling of infected
animals and rarely by direct airborne spread (Dennis and Meier 1997, Gage 1998, Parmenter et
al. 1999, Gage and Kosoy 2005). It remains endemic in many parts of the Americas, Asia and
Aftica and it is characterized by quiescent and epizootic periods that usually precede the major-
ity of human cases with increased depopulation of affected rodents, probably forcing the disper-
sal of infected fleas in search of new hosts (Perry and Fetherston 1997, Levy and Gage 1999,
Stapp et al. 2004). Phenotypically, there are three Y. pestis biotypes that caused three infamous
pandemics: Antiqua — that caused the Justinian plague, the first pandemic in the 6™ century AD;
Mediavalis — the Black Death or Great Pestilence, the second pandemic in the 14™ century; and
Orientalis — that caused the third pandemic in the 19" century (Torrea et al. 2006, Clam and
Galwankar 2005). The Orientalis pathogen was introduced to the United States around 1900
through marine shipping from plague-endemic regions of Asia by infected rats and fleas and
then spread through North- and South-America. Today, Orientalis is the dominant strain with
almost worldwide distribution and has likely been the only source of all endemic cases in the
continent. The two other biotypes have a geographically restricted distribution: Mediavalis in
Asia and Antiqua in some parts of Africa and in Central Asia. In any case, the World Health
Organization listed plague as an international quarantine reemerging disease with the status of
category one biological weapon since it has been reappearing in areas plague-free (Daszak et al.
2000, WHO 2004, Clem and Galwankar 2005, Wolf et al. 2007).

In United States, there are still occasional human cases of plague diagnosed in the western states
with fatality rates remaining high (CDC 2003). Most of the human cases occur in a peridomestic
environment and are reported from the four-corners region, 83% of 416 total cases since 1950
(CDC 2006, Eisen et al 2007A), which includes the states of Arizona, Colorado, New Mexico,
and Utah. Mortality rates for untreated plague infections range from 40 to 70% for bubonic to
almost always fatal for pneumonic or septicemic infection (Levy and Gage 1999). Little is
known about the dynamics of plague in its natural reservoirs, particularly about the survival
strategies of Y. pestis (Perry and Fetherston 1997, Gage and Kosoy 2005). Yet effective rodent
control and prompt diagnosis followed by appropriate antibiotic treatment have greatly reduced
the morbidity and mortality from the disease (Levy and Gage 1999, CDC 2003, 2006; Gage and
Kosoy 2005). Thus, informed pre-emptive decisions about plague management and prevention
preceding outbreaks would certainly be more sustainable and cost-beneficial than the usual




“fire-fighting” approach — only when an epidemic occurs, implement emergency response
plans, but by then it is usually too late to have any impact on transmission (Stenseth et al. 2008).
The natural cycles of plague are conditioned by features of the ecology, environment, host,
agent, factors which vary temporally and spatially. Recent studies have identified local climatic
factors and landscape features associated with increased plague activity. In Arizona and New
Mexico, epizootic activity intensifies when cool summer temperatures follow wetter winter-
spring seasons (Parmenter et al. 1999, Enscore et al. 2002). When favorable climatic conditions
oceur, assuming a trophic cascade of (climatological, ecological and demographic) events
(Yates 2002), they can lead to increases in the population of the rodent hosts and flea vectors
and as a consequence they can lead to a higher risk for human exposure. Several limitations
hindered these temporal models to be used as predictive models. One of the most limiting fac-
tors is their sensitivity to spatial heterogeneity that makes unlikely the ability of a good gener-
alization.

Earth observation by satellite remote sensing over nearly thirty years has enabled systematic
analysis and mapping of the close coupling between vectors of disease and the driver indicators
of climate variability, e.g. El Nifio/Southern Oscillation (ENSQ), rainfall, temperature and vege-
tation, on a global scale at high-temporal and moderate spatial resolutions (Linthicum et al.
1999, Beck et al. 2000, Pinzon et al. 2005a, Anyamba et al. 2009). More recently these tools has
been used to expand our knowledge of the coupling between plague and climate. Logistic re-
gression models were used within the four-corners region to identify local landscape features
associated with human plague cases and to create a predictive geographical model of high-risk
habitats for human exposure to Y. pestis (Eisen et al. 2007A, Eisen et al. 2007B). Although
these spatial models were not intended to be predictive in the temporal domain, they provided a
fine-scale modeling of adjacent spatial interactions between landscape elements and the ability
to predict where infections are likely to occur, albeit in limited areas. These models relate the
risk of exposure to Y. pestis to suitable environmental indicators using occurrence-only data
from the contact rates between humans and the infectious agent. Even though the epidemiologi-
cal data is of high quality, we cannot equate absence with unsuitability. Nonetheless, these stud-
ies provide some useful insights into those aspects of incorporating explicit ecological features
to improve our understanding and prediction of disease risk that cannot be treated in previous
models. Prior to the classification, the landscape and climatic features associated with human
risk to exposure to Y. pestis included elevation and 4 quarterly means of NDVI seasonal profiles
for each 8km grid cell. The stepwise optimal hierarchical clustering (SOHC) approach can be
applied to identify training samples that contribute the most in the cluster classification and op-
timize criterion functions (Duda et al 2000). The climatic, landscape and ecological properties
of these samples can be used to identify and generalize temporal characteristics of plague out-
breaks in the region (Figure 1). These features were selected for being the most valuable and
robust from a larger set of candidate features, e.g. monthly variance of NDVI seasonal profiles,
land-cover habitat type, and monthly mean of temperature and rainfall profiles (Pinzon et al.
2005a). Moreover, on a seasonal scale, natural vegetation (given by NDVI) is well correlated
with climate variables including rainfall, evapo-transpiration and surface temperature in a wide
range of environmental conditions. When these features are viewed from different timescales
using the method of empirical mode decomposition (Huang et al. 1998, Pinzon et al 2005b,
Huang et al. 2009)", we can revisit the links between climate (El Nifio/Southern Oscillation

! The most commonly used ENSO indices are the Southern Oscillation Index (SOI) computed from
the Darwin and Tahiti pressure difference and indices based on sea surface temperature on several
regions of the equatorial Pacific Ocean: R12 (0-108,80-90W]}, R3 {(55-5N,150W-90W), R4 (5S-
5N,160E-150W), and R3.4 (55-5N,170W-120W}. We can monitor ENSO through the Multivariate
ENSO Index {MEI) that is a multivariate measure of the ENSO signal as expressed in the first princi-
pal component of six observed variables from the tropical Pacific Comprehensive Ocean-
Atmosphere data set (COADS): sea level pressure, surface zonal and meridional wind components,
sea surface temperature, surface air temperature and cloudiness {Wolter and Timlin 1998}, MEl is



(ENSO)) and plague epizootics in the region To start, we relate the last 3 IMFs components of
the MEI signal (IMF,.) lagged 12 months with the time series of number of cases given by
quarters (Figure 2). The overall result is that incidence of plague is explained by positive ENSO
years as shown implicitly in Figure 2. The first two principal components of the correspondence
analysis explain 98% of the variance of the category matrix (Pinzon et al. 2010). Two salient
features are apparent: a distinct contribution to the total number of cases and when this contribu-
tion peaks in each cluster. Each cluster contributes different amounts to the total number of
cases making possible a new tool to rank plague risk: C1 (8%), C2 (26%), C3 (13%), C4 (20%),
and C5 (33%). Our ability to target limited prevention resources would also improve if we
mask the risk maps with a density population map of the region (Figure 7). The plague endemic
area is thus concentrated on peridomestic regions that constitute about 85% of the cases.
Moreover, using the climatic and ecological features to extend globally the SOHC model, we
can identify and validate common characteristics of endemic plague regions (Figure 4). 79% of
the cases (C5-+C2+C4) occur in regions where NDVI is lower than 0.4 with and average eleva-
tion less than 2000 m. Thus, the early recognition and improving management of plague pro-
vided by these models have underscored the importance of an even better understanding of the
(spatio-temporal) conditions that give rise to the emergence of plague in both human and animal
populations and of developing critical tools to make plague surveillance more comprehensive
and timely in order to prevent or minimize the potential for human outbreaks. This kind of sys-
tem could operate in near real-time to monitor plague risk on a monthly basis and could offer
the opportunity to identify eco-climatic conditions associated with potential vector-borne dis-
ease outbreaks over large areas. Still, many aspects of this subject are still ripe for further in-
vestigation and improvement.
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Figure 1. The stepwise optimal hierarchical clustering approach is applied to
identify training samples that contribute the most in the cluster classification and
optimize criterion functions. The climatic, landscape and ecological properties of
these samples are used to identify and generalize temporal characteristics of plague
outbreaks in the region. Adapted from Pinzon et al 2010.
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Figure 2. Time series behavior of the NDVI data from the documented outbreak
sites of EBOV HFrelate the last 3 IMFs components of the MEI signal (IMFi.,blue
line) lagged 12 months with the time series of number of cases given by quarters
and clustered according to SOHC. Adapted from Pinzon et al 2010.
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Figure 3. Time series behavior of the NDVI data from the documented outbreak
sites of EBOV HF. Note that all outbreaks occur toward the middle of the second dry
season. Adapted from Pinzon et al 2004.



Figure 4. Global extension of the SOHC model based on 5 clusters.



